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STABILITY AND SELF-OSCILLATIONS OF A ROTOR

CONTAINING A CONDUCTING LIQUID IN A MAGNETIC FIELD

UDC 534N. V. Derendyaev and I. N. Soldatov

This paper considers the problem of the stability in the small of the steady-state spinning of a rotor
with a cylindrical cavity partly filled with a viscous, incompressible, conducting liquid in a magnetic
field. The responses of the butt-end boundary layers and the resultant force exerted by the liquid
on the rotor performing circular precession of small radius are determined. The plane of the vis-
coelastic restraint parameters of the rotor axis was D-partitioned into regions with different degrees
of instability is constructed. Steady-state spinning near the boundary of the region of stability in the
space of parameters is studied assuming nonlinear responses of the supports. It is shown that passage
through the boundary of the region of stability leads to bifurcation of the steady-state spinning regime,
resulting in periodic motion of the type of circular precession. The origin of periodic motion from
steady-state spinning can be subcritical or supercritical.
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Introduction. Rotor systems containing liquids have found increasing applications, in particular, in the
separation of soluble substances. Instabilities of the steady-state spinning of a rotor partly filled with a liquid
are due, first, to resonance excitation of waves in the liquid [1–3]. Because the liquids in rotors commonly have
conductivity, it seems possible to use a magnetic field to damp the wave resonances of the conducting liquid and,
hence, to obtain an additional means for stabilizing steady-state rotor spinning.

The following remark needs to be made. Apparently, a homogeneous constant magnetic field directed along
the rotor spinning axis is the easiest to implement. Laval restraint of the rotor axes is widely used; in this case,
the angular displacements of the rotor axis are negligible. For restraints of this type, it is usually assumed that
the particles of the liquid and the rotor move in planes perpendicular to the steady-state spinning axis. However,
when the conducting liquid performs plane–parallel motion in a magnetic field collinear to the spinning axis, the
resultant ponderomotive force is equal to zero and the magnetic field does not exert an influence on the stability
of the rotor [4]. Hence, a mathematical model that includes the magnetic field effect should take into account that
the liquid motion is not plane parallel, at least near the butt ends.

In the present study, the stability of the steady-state rotor spinning is examined using a version of the
D-partitioning method [5] that does not employ a secular equation. The plane of the viscoelastic restraint parameters
of the rotor axis is partitioned into regions with different degrees of instability.

1. Equations and Boundary Conditions. Let a rotor (Fig. 1) having a long cylindrical cavity be partly
filled with a viscous, incompressible, conducting liquid. The external magnetic field is constant and homogeneous,
and is directed along the spinning rotor axis. The points of the rotor can move only in planes perpendicular to the
steady-state spinning axis. The absolute angular velocity of spinning is kept constant and equal to Ω.

We introduce a fixed coordinate system O1x1x2x3 with the axis O1x3 coincident with the steady-state
spinning axis. The rotor axis is under axisymmetric viscoelastic restraint, which is generally speaking nonlinear.
The geometry of the structure is such that is possible to neglect angular displacements of the rotor and assume that
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the points of the rotor move in planes perpendicular to the steady-state spinning axis. We also ignore the elasticity
of the nonconducting rotor walls.

The equations of motion of the rotor are written in complex variables:

Mz̈ = F + f, θ̇ = Ω,

z = x0
1 + ix0

2, F = F1 + iF2, i2 = −1, Fk = −
∫ ∫
S

σkjnj ds, (1)

σkj = −pδkj + µ
(∂vk

∂xj
+

∂vk

∂xk

)
, j = 1, 2, k = 1, 2,

f = −(K + Kα|z|α)z − (H + Hβ |z|β)ż.

Here 0 < α 6 1 and 0 < β 6 1 are numerical parameters, M is the mass of the cylinder, x0
1 and x0

2 are the
coordinates of the point of intersection of the rotor axis with the plane O1x1x2, Fk are the hydrodynamic-force
components, σkj are the stress-tensor components, µ is the dynamic viscosity of the liquid, f is the response of the
rotor axis support, and K and H are linear elasticities and viscosities and Kα and Hβ are the nonlinear elasticities
and viscosities of the restraints of the rotor axis, respectively.

For the spinning rates and rotor dimensions used in engineering, one can assume that the magnetic Reynolds
number is small and use a noninduction approximation. In view of this, we employ the following equations of motion
of a viscous, incompressible, conducting liquid in the rotor cavity:

∂v

∂t
+ (v∇) v = −∇p

ρ
+ ν ∆v +

σ

ρ
(E + [v,B],B), div v = 0. (2)
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Here ρ is the liquid density, ν = µ/ρ is the kinematic viscosity, and σ is the conductivity. The equations for the
electric field E are written as

rotE = 0, div E + (B rotv) = 0. (3)

The boundary conditions have the form

v
∣∣∣
s

= vs,
∂Φ
∂t

+ (v,∇Φ)
∣∣∣
Φ=0

= 0, Φ(x1, x2, x3, t) = 0,

(E,n)
∣∣∣
s

= −([vs,B],n), (E + [v,B],∇Φ)
∣∣∣
Φ=0

= 0, (4)

σkj
∂Φ
∂xj

∣∣∣
Φ=0

= −p∗
∂Φ
∂xk

.

Here n is the normal to the rotor wall s, Φ(x1, x2, x3, t) = 0 is the equation of the free surface, vs = (ẋ0
1, ẋ

0
1, 0), and

p∗ is the pressure on the free surface.
2. Variation of the Stability and Circular Precession. In [2], a method is proposed to study, in a

linear approximation, the stability of steady-state spinning for a rotor of cylindrical symmetry with a cavity partly
filled with a viscous incompressible liquid for the case where the angular velocity of the rotor is kept constant and
its axis is under axisymmetric viscoelastic restraint. This stability analysis method is generalized in [3]. After
linearization near the steady-state spinning regime, the equations of motion (1)–(4) and the boundary conditions
admit solutions proportional to exp (λt) (λ is a characteristic number). The steady-state spinning regime is stable
if all values of λ have negative real parts, and it is unstable if even one of the values of λ has a positive real part.
For a continuous dependence of λ on the problem parameters, the degree of instability changes when a pair of
characteristic numbers passes through the imaginary axis. Following [2], one can show that imaginary characteristic
numbers exist if and only if the system admits a solution of the type of circular precession. Hence, the parameter
value for which the degree of instability of the system changes can be found from the condition for the existence
of circular precession. Thus, one first needs to consider the magnetohydrodynamic problem of the motion of the
conducting liquid for the case of circular precession of the rotor and to find the force exerted by the liquid on the
rotating cylinder. Next, using the expressions obtained for the force and the linearized equations of translation
motion of the rotor (1), one obtains conditions under which the circular precession is possible. These conditions
determine the boundaries of the regions with different degrees of instability in the space of the problem parameters.

3. Plane Problem and Boundary-Layer Problem. Let the rotor performs circular precession of small
radius ε with frequency ω. We introduce a moving coordinate system Oξηζ so that the coordinate origin coincides
with the center of the cross-section of the cylindrical cavity of the rotor O and the axis Oξ is directed along the
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line connecting the center of the precession O1 and the point O (Fig. 2). The axis Oζ is parallel to the axis Ox3.
We also introduce a cylindrical coordinate system rϕζ related to the coordinate system Oξηζ. In the steady-state
spinning regime, the liquid rotates together with the rotor as a unit:

v = v0 ≡ ω0reϕ, p = p0 ≡ ρΩ(r2 − b2)/2 + p∗, E = E0 ≡ −[v0,B]

(ω0 = Ω− ω).
In the case of circular precession, the quantities v, p, Φ, and E are expanded in powers of the small

parameter ε near the steady-state spinning regime:

v = v0 + εv1 + ε2v2 + . . . , p = p0 + εp1 + ε2p2 + . . . ,

E = E0 + εE1 + ε2E2 + . . . , Φ = r − b− εh(ϕ) + . . . .

In the chosen noninertial coordinate system Oξηζ, the liquid motion during the circular precession is de-
scribed by time-independent functions [6], and, in the first order in ε, it is defined by the following linearized
equations of magnetohydrodynamics:

rot [v1,v0] = −2[Ω,v1]−
∇p1

ρ
+ ω2eξ +

σ

ρ
[E1,B]− σB2

ρ
v1 + ν ∆v1 +

σ[B,v1]
ρ

B,

div v1 = 0, rotE1 = 0, div E1 = −(B, rotv1).
(5)

In this case, the solution of system (5) with the corresponding boundary conditions can be written as the sum of
two terms: the solutions of the problem of plane parallel liquid motion vp

1 , pp
1, and Ep

1 and the solutions of the
boundary-layer problem vb

1, pb
1, and Eb

1 taking into account the effect of the cylindrical cavity near the butt ends.
In other words, it can be assumed that except in small regions near the butt ends, the particles of the liquid move
in planes parallel to the plane Oξη. This motion is described by Eqs. (5) in which the velocity component along
the axis Oζ and the derivatives with respect to ζ are set equal to zero. In boundary conditions (4), one should
retain only the condition of attachment of the liquid, the condition of nonpenetration of electric current through
the vertical walls of the cylinder, and the kinematic and dynamic conditions on the free cylindrical surface of the
liquid:

vp
1

∣∣∣
r=a

= 0, ω0
∂h

∂ϕ

∣∣∣
r=b

= up
1

∣∣∣
r=b

,

Ep
1r

∣∣∣
r=a

= 0, Ep
1r + vp

1B
∣∣∣
r=b

= 0,

−pp
1 − ρΩ2rh + 2µ

∂up
1

∂r

∣∣∣
r=b

= 0,
∂vp

1

∂r
+

1
r

∂up
1

∂ϕ
− vp

1

r

∣∣∣
r=b

= 0.

Here up
1 and vp

1 are the radial and azimuthal velocity components vp
1 = (up

1, v
p
1 , 0), r = b + εh(ϕ) (free-surface

equation), and Ep
1r is the component of the vector Ep

1 .
The solution of the purely hydrodynamic plane problem is found in [2]. It is easy to show that the magnetic

field does not influence the velocity field vp
1 and the solution can be written as

Ep
1 = −[vp

1 ,B],

up
1 =

[
c1 +

c2

r2
+

i

r
Z1(kr)

]
eiϕ +c.c., vp

1 =
[
ic1 −

ic2

r2
− kZ0(kr) +

1
r

Z1(kr)
]
eiϕ +c.c.,

pp
1

ρ
=

[
i(2Ω− ω0)c1r + i(2Ω + ω)

c2

r
+

ω2r

2
− 2ΩZ1(kr)

]
eiϕ +c.c.,

where Zn(kr) = c3H
(2)
n (kr) + c4H

(1)
n (kr), H

(1),(2)
n (kr) is a Hankel function of the nth order, k = x(i − ω0/|ω0|),

x =
√
|ω0|/(2ν), and c.c. denotes the expression which is complex conjugate to the previous expression.
Viscous boundary layers of thickness

√
ν/Ω form near the butt ends. Using boundary layer theory, we derive

the system of equations describing liquid motion near the butt ends. We note that in the end boundary layers,
the components of rotvb

1 have different order: the rotor component normal to the butt end of the cylinder is much
smaller than the other two. This implies that div Eb

1 can be approximately considered equal to zero. Then, from
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the homogeneous boundary conditions and the condition rot Eb
1 = 0, it follows that Eb

1 is equal to zero at any point.
In this case, for ub

1 and vb
1, we have the equations

ω0
∂ub

1

∂ϕ
= 2Ωvb

1 + ν
∂2u1

∂ζ2
− σB2

ρ
ub

1, ω0
∂vb

1

∂ϕ
= −2Ωub

1 + ν
∂2ub

1

∂ζ2
− σB2

ρ
vb
1 (6)

with the boundary conditions

ub
1

∣∣∣
ζ=0

= −up
1, vb

1

∣∣∣
ζ=0

= −vp
1 , ub

1

∣∣∣
ζ→∞

= 0, vb
1

∣∣∣
ζ→∞

= 0. (7)

Here the conditions only for the lower butt (ζ = 0) are given; the conditions at the other butt end are written
similarly. The right sides of boundary conditions (7) include only the first harmonic in ϕ; the other harmonics are
absent. From this it follows, that the solution of problem (6), (7) can be written as

ub
1 = û(r, ζ) eiϕ +c.c., vb

1 = v̂(r, ζ) eiϕ +c.c.

Immediate substitution shows that Eqs. (6) are satisfied for the functions

û(r, ζ) = A1(r) e−λ1η +A2(r) e−λ2η +A3(r) eλ1η +A4(r) eλ2η,

v̂(r, ζ) = −iA1(r) e−λ1η +iA2(r) e−λ2η −iA3(r) eλ1η +iA4(r) eλ2η,

where

λn =
(σ2B4

ρ2ν2
+

(ω0 + 2Ω(−1)n+1)2

ν2

)1/4

eiΘn =
1
a

(Ha4 +(1− τ + 2(−1)n+1)2E−2
∗ )1/4 eiΘn ,

Θn =
1
2

arctan
[ρ(ω0 + 2Ω(−1)n+1)

σB2

]
=

1
2

arctan
[1− τ + 2(−1)n+1

Ha2 E

]
, n = 1, 2,

Ha = Ba
√

σ/(ρν) is the dimensionless Hartman number, which characterizes the relation between magnetic and
viscous forces, E∗ = ν/(Ωa)2 is the dimensionless Ekman number, and τ = ω/Ω.

From the boundary conditions, one obtains the functions An(r):

A1 = −
[ c2

r2
+

i

r
Z1(kr)− ik

2
Z0(kr)

]
, A2 = −

[
c1 +

ik

2
Z0(kr)

]
, A3 = A4 = 0.

The corresponding solution for the boundary layer at the upper butt end is similar. The coefficients cn are deter-
mined from the boundary conditions written as follows:

c1 +
c2

a2
+ i

c3

a
H

(2)
1 (ka) + i

c4

a
H

(1)
1 (ka) = 0,

c1 −
c2

a2
+ i

c3

a
[kaH

(2)
0 (ka)−H

(2)
1 (ka)] + i

c4

a
[kaH

(1)
0 (ka)−H

(1)
1 (ka)] = 0,

4
c2

b2
− i

c3

a

[
2kaH

(2)
0 (kb) + (k2b2 − 4)

a

b
H

(2)
1 (kb)

]
− i

c4

a

[
2kaH

(1)
0 (kb) + (k2b2 − 4)

a

b
H

(1)
1 (kb)

]
= 0,

− iτ2

1− τ
c1 + i

[2− 4τ + τ2

1− τ
− 4(1− τ)

k2b2

]c2

b2
+

[
− 2(1− τ)

kb
H

(2)
0 (kb) +

(2τ − 1
1− τ

+
4(1− τ)

k2b2

)
H

(2)
1 (kb)

]
b−1c3

(8)

+
[
−2(1− τ)

kb
H

(1)
0 (kb) +

(2τ − 1
1− τ

+
4(1− τ)

k2b2

)
H

(1)
1 (kb)

]
b−1c4 = −1

2
τ2Ω.

The algebraic system of linear equations for cn (8) is ill-conditioned; therefore, we convert to the quantities
c̄1 = c1Ω−1, c̄2 = c2a

−2Ω−1, c̄3 = c3a
−1Ω−1H

(2)
0 (ka), and c̄4 = c4a

−1Ω−1H
(1)
0 (kb). Below in this section, the bar

above the symbols cn is omitted. System (8) becomes

c1 + c2 + ic3h21 + ic4g20 = 0,

c1 − c2 + ic3(ka− h21) + ic4(kag10 − g20) = 0,

4c2δ
−2 − ic3[2kbh01 + (k2b2 − 4) δ−1h11]− ic4[2kb + (k2b2 − 4)δ−1g11] = 0,
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− iτ2

1− τ
c1 + i

[2− 4τ + τ2

1− τ
− 4(1− τ)

k2b2

]
c2δ

−2 +
[
−2(1− τ)

kb
h01 +

(2τ − 1
1− τ

+
4(1− τ)

k2b2

)
h11

]
δ−1c3

+
[
−2(1− τ)

kb
+

(2τ − 1
1− τ

+
4(1− τ)

k2b2

)
g11

]
δ−1c4 = −1

2
τ2.

Here

h01 = H
(2)
0 (kb)/H

(2)
0 (ka), h21 = H

(2)
1 (ka)/H

(2)
0 (ka), h11 = H

(2)
1 (kb)/H

(2)
0 (ka),

g20 = H
(1)
1 (ka)/H

(1)
0 (kb), g10 = H

(1)
0 (ka)/H

(1)
0 (kb), g11 = H

(1)
1 (kb)/H

(1)
0 (kb),

δ = b/a is the ratio of the thickness of the liquid layer adjacent to the wall for steady-state spinning to the radius
of the cavity.

4. Hydrodynamic Forces. The force exerted by the liquid on the upper butt end of the cylinder is given
by

F b
ξ = −

2π∫
0

a∫
b

(σζr cos ϕ− σζϕ sinϕ) r dϕ dr = −2πµRe
{

λ2[c1(a2 − b2) + iaZ1(ka)− ibZ1(kb)]
}

,

F b
η = −

2π∫
0

a∫
b

(σζr sinϕ + σζϕ cos ϕ) r dϕ dr = −2πµ Im
{

λ2[c1(a2 − b2) + iaZ1(ka)− ibZ1(kb)]
}

.

We calculate the hydrodynamic force acting on the side wall of the cylindrical cavity:

F p
ξ = −

d∫
0

2π∫
0

(σrr cos ϕ− σrϕ sinϕ)a dϕdz, F p
η = −

d∫
0

2π∫
0

(σrr sinϕ + σrϕ cos ϕ)a dϕdz

(d is the height of the cylinder). By virtue of the boundary conditions u = 0 and v = 0 on the wall r = a and the
incompressibility condition ∂u/∂r = 0 for r = a, the stress relations

σrr = −p + 2µ
∂u

∂r
, σrϕ = µ

(1
r

∂u

∂ϕ
+

∂v

∂r
− v

r

)
are simplified:

σrr = −p, σrϕ = µ
∂v

∂r
.

After some transformations, we obtain

F p
ξ = 2πa2ρε Re [ω2/2 + 2i(Ω− ω)c2], F p

η = −4πa2ρε(Ω− ω) Re c2.

The dependence of the total hydrodynamic force with the components Fξ = F p
ξ + 2F b

ξ and Fη = F p
η + 2F b

η on the
dimensionless frequency τ has a distinct resonance nature due to wave generation in the liquid.

5. Constructing Regions with Different Degrees of Instability. Using the method proposed in
[4] to construct regions with different degrees of instability of the steady-state spinning regime in the plane of the
restraint parameters of the cylinder axis, we find the values of the parameters K and H for which circular precession
is possible. For this, we substitute the expression for the total hydrodynamic force into the equation of motion of
the cylinder (1). After division by mεΩ2 taking into account

F1 = Re [(Fξ + iFη) eiωt], F2 = Im [(Fξ + iFη) eiωt], (9)

we obtain the relations linking ω and the problem parameters in the case of circular precession:

−Mτ2/m + K̄ = F̄ξτ
2, H̄τ = F̄ητ2. (10)

Here m = πρ(a2−b2)d is the mass of the liquid which partly fills the cavity of the rotor, K̄ = K/(mΩ), H̄ = H/(mΩ),
and F̄ξ = Fξ/(mω2) and F̄η = Fη/(mω2) are the dimensionless force components, which can be written as

F̄ξ =
1

1− δ2
Re

{
1 + 4i

1− τ

τ2
c̄2 −

4E∗λ2a

τ2ω̄
[(1− δ2)c̄1 + ic3(h21 − δh11) + ic4(g20 − δg11)]

}
,
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F̄η =
4

1− δ2

1
τ2

Im
{
−i(1− τ)c̄2 −

4E∗λ2a

ω̄
[(1− δ2)c̄1 + ic3(h21 − δh11) + ic4(g20 − δg11)]

}
(ω̄ = d/a is the ratio of the height of the rotor cavity to its radius).

Figures 3 and 4 show the D-partitions of the plane of the parameters K̄ = K/(mΩ) and H̄ = H/(mΩ) into
regions with different degrees of instability D(n) (n is the degree of instability) for Ha = 1.4 · 104 and E∗ = 10−4,
5 · 10−5, respectively. In both cases, the remaining parameters are identical: M/m = 1.4, δ = 0.92, and ω̄ = 2.
The construction of the bifurcation curves (so-called D-curves) dividing the plane (K̄, H̄) into regions with different
degrees of instability is described in detail in [2]. The hatching on the D-curves is conventional: transition from
the hatched side of a curve onto the unhatched side of the curve in the plane of the parameters corresponds to an
increase in the degree of instability by two unities. The arrow indicates the increasing direction of the parameter τ .
For comparison, the D-partitions for the cases of no magnetic field (Ha = 0) are shown by dashed curves. On the
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dashed curves, there is no hatching. Apart from the region of stability D1(0) corresponding to large values of the
damping and stiffness coefficients, there is a region of stability D2(0) near zero values of K̄ and H̄. This region is
of the greatest interest from a practical view point. The region D2(0) (see Fig. 3) is scaled up in Fig. 5 (E∗ = 10−4,
M/m = 1.4, δ = 0.92, and ω̄ = 2). From Figs. 3–5, it follows that rather strong magnetic fields lead to variations
in the shape of the D-curve, among which we note a noticeable expansion of the region of stability D2(0) along the
ordinate (the axis H̄) with a slight contraction along the abscissa (the axis K̄) and deformation with a left-hand
shift of the entire curve of D.

The resultant of the ponderomotive forces arises in the butt-end layers; therefore, variation in E∗ (the layer
thickness is approximately equal to aE

1/2
∗ ) leads to variation in the magnetohydrodynamic forces acting on the

rotor. An increase in the Ekman number E∗ diminishes the effect of the magnetic field (compare Fig. 4 and Fig. 5).
6. Behavior of the Steady-State Spinning Regime near the Boundary of the Region of Stability.

Small variations of the parameters can result in the rotor system entering the boundary of the region of stability.
Furthermore, in the case of an arbitrarily small violation of the “dangerous” boundary (see [7]), the system will enter
a new state, which cannot be brought close to the initial state by a small violation of the boundary. Investigation of
the nature of the boundaries is very important in stability analysis. Let us show that in the examined rotor model
with a constant angular velocity and a nonlinear viscoelastic restraint of the axis, exit from the region of stability
gives rise to Andronov–Hopf bifurcation (see [8–11]).

To elucidate whether passage through the boundary can lead to Andronov–Hopf bifurcation (i.e., the origin
of periodic motion from the steady-state spinning regime), it is necessary to retain the principal nonlinear terms
in the equations. We shall confine ourselves to the case where α = β = 1 in the expression for the response of the
supports. We seek a periodic solution in the form of circular precession:

z = ε exp (iωt). (11)

The right sides of the magnetohydrodynamic equations of the second approximation in ε contain the square of
the first harmonic in ϕ, and the boundary conditions are zeroth. This implies that the solution of the second-
approximation equations contains only the second or (and) zero harmonics in ϕ. Hence, the expansion of the

hydrodynamic force Fi =
∫ ∫

σijnj ds in powers of ε does not contain a term with ε2. Therefore, in considering

the nonlinear problem, one can take into account only the nonlinear response of the restraint without determining
the solution of the magnetohydrodynamic problem of the second approximation. Substituting (11) and Fξ and Fη

into (1), we obtain the following existence conditions for the periodic solution:

−Mω2 + K + K1ε = Fξ/ε, (H + H1|ω|ε)ω = Fη/ε. (12)

For ε = 0, the system of the final equations (12) for ε coincides with Eqs. (10), from which the boundaries of
the regions with different degrees of instability were determined. Thus, for the parameter values belonging to the
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D-curve, system (10) has a real solution with ε = 0 and ω 6= 0. If this solution is a simple root of Eqs. (10), then for
arbitrarily small deviations from the critical parameter values, by virtue of continuity, one obtains a close solution
with real ε 6= 0 and ω 6= 0. To occurrence of a solution with ε > 0 corresponds to the origin of periodic motion
(in the form of circular precession) from the steady-state spinning regime (ε = 0), i.e., Andronov–Hopf bifurcation.
Thus, we seek a solution of system (12) near the boundaries of the region D2(0) using the perturbation method,
which leads to the following system of equations for ε and δτ :

−
(
2

M

m
+ 2F̄ξ +

∂F̄ξ

∂τ
τ
)
τ δτ + K̄1ε = −δK̄, −

(
−F̄η +

∂F̄η

∂τ
τ
)
δτ + H̄1|τ |ε = −δH̄

[K̄1 = K1a/(mΩ2) and H̄1 = H1a/m].
Small increments of δK̄ and δH̄ are chosen so that the point (K̄ + δK̄, H̄ + δH̄) lies on the normal to the

boundary issuing from the point (K̄, H̄). If periodic motion originates when the parameters leaves go out from
the region of stability through any segment of its boundary, such bifurcation is called supercritical. In passage
through such a segment, the excitation of self-oscillations proceeds smoothly, and, consequently, such segments
of the boundary are commonly called “safe.” In the neighborhood of “dangerous” segments, periodic motion in
the form of circular precession of small radius exists in the region of stability of the steady-state spinning regime.
This implies that in approaching such a segment from the region of stability, the system becomes unstable against
perturbations of small but finite magnitudes and sever excitation of self-oscillations occurs.

The nature of the boundaries is significantly affected by the form of the elastic nonlinearity, i.e., the sign
of the coefficient K̄1. In the case of “progressive” stiffness K̄1 > 0 and viscosity H̄1 > 0 for the above-mentioned
values of the remaining parameters, the boundary of the region D2(0) is “dangerous.” (In the calculations, the
values of K̄1 were varied from 0.01 to 1 and the values of H̄1, from 10−3 to 1.) For “regressive” stiffnesses K̄1 < 0
(H̄1 > 0), the boundary of the region of stability D2(0) is “safe.” The magnetic field has little effect on the nature
of the boundaries.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 03-01-00478,
03-02-16924).
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